+0  
 
0
213
1
avatar

An airplane takes off from an airport.  When the airplane reaches a height of 16,500 (ft), the airplane has traveled a horizontal distance of 6000 ft, as shown in the diagram below.

 

 Mar 22, 2021
 #1
avatar+9299 
0

Part A:

 

tan( x )  =  opposite / adjacent

 

tan( x )  =  16500 / 6000

 

tan( x )  =  11/4

 

x   =   arctan( 11/4 )

 

x   ≈   70°

 

Part B:

 

This is the length of the third/unknown side of the triangle, which we can find using the Pythagorean Theorem. Let's call this side  "c". Then...

 

60002  +  165002   =   c2

 

\(\color{} c\ =\ \sqrt{6000^2+16500^2}\)

 

We could plug the above into a calculator, or we can first simplify it like this before plugging it in:

 

\(\color{gray} c\ =\ \sqrt{6000^2+16500^2} \\~\\ \color{gray} c\ =\ \sqrt{(4\cdot1500)^2+(11\cdot1500)^2} \\~\\ \color{gray} c\ =\ \sqrt{4^2\cdot1500^2+11^2\cdot1500^2} \\~\\ \color{gray} c\ =\ \sqrt{1500^2(4^2+11^2)} \\~\\ \color{gray} c\ =\ \sqrt{1500^2}\cdot\sqrt{(4^2+11^2)} \\~\\ \color{gray}c\ =\ 1500\sqrt{137} \)

 

Now if we put this into a calculator we get:

 

c   ≈   17557   (And this is in feet)

 Mar 22, 2021

9 Online Users

avatar