In a geometric progression of real numbers, the sum of the first two terms is 7, and the sum of the first six term is 91. Find the sum of the first four terms.
a1−r61−r=91=13⋅7=13a1−r21−r1−r61−r2=13r6−13r2+12=0r=±1, ±√3We only need consider r=√3a1−31−√3=7a=72(√3−1)a1−r41−r=28
.(1 - r^2) (1 - r^6)
a*_______ = 7 and a * _________ = 91
1 - r (1 - r)
a * (1 -r^2) = 7 (1 - r) a ( 1 -r^6) = 91 ( 1 - r)
13 a ( 1 - r^2) = 91 (1 - r) a ( 1 - r^6) = 91 ( 1 - r)
So
13a ( 1 -r^2) = a ( 1 - r^6)
13 ( 1 - r^2) = ( 1 -r^6)
13 - 13r^2 = 1 - r^6
r^6 - 13r^2 + 12 = 0
Note that r = 1 and r = -1 are roots
So (r + 1) ( r -1) = r^2 - 1
Dividing we have
r^4 + r^2 - 12
r^2 -1 [ r^6 - 13r^2 + 12]
r^6 - 1r^4
_____________________________________
r^4 -13r^2 + 12
r^4 - r^2
_______________
-12r^2 + 12
-12r^2 + 12
____________
0
The remaining polynomial = r^4 + r^2 - 12
Set to 0 and factor
(r^2 + 4) ( r^2 - 3) = 0
Since the sum of the first n terms increases, then √3 is the only possible value for r
So
7 = a ( 1 - 3) / ( 1 -√3)
7 = -2a / (1 - √3)
7= 2a / (√3 - 1)
a = (7/2)(√3 - 1)
And the sum of the 1st 4 terms =
(7/2) (√3 -1) ( 1 - 9) / ( 1 - √3) =
(7/2) (√3 -1) (-8) / ( 1 - √3) =
(7/2) (√3 -1) (8) / ( √3 - 1) =
(7/2) (8) =
28
In a geometric progression of real numbers, the sum of the first two terms is 7,
and the sum of the first six term is 91.
Find the sum of the first four terms.
s4=a1−r41−rs2=a1−r21−rs4s2=a1−r41−ra1−r21−rs4s2=(1−r4)1−r2s4s2=(1−r2)(1+r2)1−r2s4s2=1+r2s4=s2(1+r2)|s2=7s4=7(1+r2)(1)s2=a+ars2=a(1+r)|s2=77=a(1+r)a=71+r(2)
s6=S2+ar2+ar3+ar4+ar5|s2=7,s6=9191=7+ar2+ar3+ar4+ar584=ar2+ar3+ar4+ar584=ar2(1+r+r2+r3)|a=71+r84=7r2(1+r+r2+r3)1+r|1+r+r2+r3=1−r41−r84=7r21−r41−r1+r84=7r2(1−r4)(1−r)(1+r)84=7r2(1−r4)(1−r2)84=7r2(1−r2)(1+r2)(1−r2)84=7r2(1+r2)|:712=r2(1+r2)12=r2+r4r4+r2−12=0r2=−1±√1−4∗(−12)2r2=−1±√492r2=−1±72r2=−1+72r2=62r2=3r2=−1−72r2=−82r2=−4r is a complex number! No solution
s4=7(1+r2)|r2=3s4=7(1+3)s4=7∗4s4=28
The sum of the first four terms is 28