Find the fifth term of the geometric sequence with first term 2 and second term 1/5.
so we have $ \{ \underbrace{2}_\text{ first term },\underbrace{\frac{1}{5}}_\text{ 2nd term } , \underbrace{...}_\text{ 2 other terms }, \underbrace{a_5}_\text{ 5th term } \} $
the formula to find any term of this geosequence is
$a_n=ar^{n-1}$ where $a_n=n^{th} term$ ; $ a=\text{first term}$ ; $r=\text{common ratio}$
so far we have $ a_5=2r^{5-1} $
to find the ratio we just write this simple equation $ 2\cdot \:r=\frac{1}{5} \implies r=\frac{1}{10} $
now that we know what the common ratio is, going back and plugging it in the formula we get:
$ a_5=2\left(\frac{1}{10}\right)^{5-1} $
$ a_5=2\cdot \frac{1^4}{10^4} $
$ a_5=2\cdot \frac{1}{10^4} $
$ a_5=\frac{2}{10^4} $
$ \boxed{a_5=\frac{2}{10000}} \Leftrightarrow \boxed{ a_5=\frac{1}{5000}} $
From a1 to a2 is a1 * r so r = 1/10
starting form second term 1/5 * r * r * r = a5 = 1/5 * 1/1000 = 1/5000