Let b1 = a
So....b3 = ar*2 and b5 = ar*4
So
ar^2 - a = 16 → a [r^2 - 1] = 16 → a = 16 / [ r^2 - 1 ] (1)
ar^4 - ar^2 = 144→ a [ r^4 - r^2] = 144 → a = 144 / [ r^4 - r^2] (2)
Equating (1) and (2) we have that
16 / [ r^2 - 1 ] = 144 / [ r^4 - r^2] cross-multiply
16 [ r^4 - r^2] = 144 [ r^2 - 1 ] simplify
16r*2 [ r^2 - 1] = 144 [r^2- 1] divide through by 16
r^2 [ r^2 - 1] = 9 [r^2 - 1] divide through by [ r^2 - 1]
r^2 = 9 → r = 3 or -3
If r = ±3, then b1 = a = 16 / [ 3^2 - 1] = 16 / 8 = 2