Calculate the sum of the geometric series $1+\left(\frac{1}{8}\right)+\left(\frac{1}{8}\right)^2 + \left(\frac{1}{8}\right)^3 + \dots$. Express your answer as a common fraction.
GP: \(1, {1\over8}, {1\over 8^2},...\)
a = 1, r = 1/8
\({S}_{∞} ={a\over 1-r}\)
\(={1\over 1-{1\over 8}}\)
\(={8\over 7}\)