+0  
 
0
1081
1
avatar+249 

Consider two infinite geometric series. The first has leading term a, common ratio b, and sum S. The second has a leading term b, common ratio a, and sum S. Find the value of a+b. 

 Sep 30, 2016
 #1
avatar+129899 
+5

Consider two infinite geometric series. The first has leading term a, common ratio b, and sum S. The second has a leading term b, common ratio a, and sum S. Find the value of a+b. 

 

We have that

 

a / [ 1 - b]  = S       and b / [ 1 - a] =  S

 

Therefore

 

a / [ 1 - b ]  =  b / [ 1 - a]      cross-multiply

 

a [ 1 - a]    =   b [ 1 - b]    simplify

 

a - a^2   = b - b^2    rearrange

 

( a - b ) =   a^2 - b^2   factor the right side

 

(a - b) =  (a - b) ( a + b)         divide both sides by  (a - b)

 

1  =  a + b

 

 

 

cool cool cool

 Sep 30, 2016

1 Online Users

avatar