We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
111
1
avatar+140 

Let A=(10,-10) and O=(0,0). Determine the sum of all x and y-coordinates of all points Q on the line y=-x+6 such that angle OQA = 90.

 Aug 4, 2019
 #1
avatar+23293 
+4

Let A=(10,-10) and O=(0,0).

Determine the sum of all x and y-coordinates of all points Q on the line y=-x+6

such that angle OQA = 90.

 

\(\begin{array}{|rcll|} \hline -\dbinom{x_Q}{y_Q}\dbinom{x_A-x_Q}{y_A-y_Q} &=& 0 \\\\ \dbinom{x_Q}{y_Q}\dbinom{x_A-x_Q}{y_A-y_Q} &=& 0 \quad | \quad y_Q = 6-x_Q \\\\ \dbinom{x_Q}{6-x_Q}\dbinom{x_A-x_Q}{y_A-(6-x_Q)} &=& 0 \quad | \quad x_A = 10,\ y_A=-10 \\\\ \dbinom{x_Q}{6-x_Q}\dbinom{10-x_Q}{-10-(6-x_Q)} &=& 0 \\\\ \dbinom{x_Q}{6-x_Q}\dbinom{10-x_Q}{-10-6+x_Q} &=& 0 \\\\ \dbinom{x_Q}{6-x_Q}\dbinom{10-x_Q}{-16+x_Q} &=& 0 \\\\ x_Q(10-x_Q) + (6-x_Q)(-16+x_Q) &=& 0 \\ 10x_Q-x_Q^2 -96+6x_Q+16x_Q-x_Q^2 &=& 0 \\ -2x_Q^2 + 32x_Q-96 &=& 0 \quad | \quad : (-2) \\ \mathbf{x_Q^2 - 16x_Q + 48} &=& \mathbf{0} \\ x_Q &=& \dfrac{16\pm \sqrt{16^2-4\cdot 48} }{2} \\ x_Q &=& \dfrac{16\pm \sqrt{64} }{2} \\ x_Q &=& \dfrac{16\pm 8 }{2} \\ x_Q &=& 8 \pm 4 \\\\ x_Q &=& 8+4 \\ \mathbf{x_Q} &=& \mathbf{12} \\ y_Q &=& 6-x_Q \\ y_Q &=& 6-12 \\ \mathbf{y_Q} &=& \mathbf{-6} \\\\ x_Q &=& 8-4 \\ \mathbf{x_Q} &=& \mathbf{4} \\ y_Q &=& 6-x_Q \\ y_Q &=& 6-4 \\ \mathbf{y_Q} &=& \mathbf{2} \\ \hline \end{array}\)

 

The sum of all x and y-coordinates of all points Q
\(12-6+4+2 = \mathbf{12}\)

 

laugh

 Aug 4, 2019

8 Online Users

avatar
avatar