Let A=(10,-10) and O=(0,0). Determine the sum of all x and y-coordinates of all points Q on the line y=-x+6 such that angle OQA = 90.
Let A=(10,-10) and O=(0,0).
Determine the sum of all x and y-coordinates of all points Q on the line y=-x+6
such that angle OQA = 90.
−(xQyQ)(xA−xQyA−yQ)=0(xQyQ)(xA−xQyA−yQ)=0|yQ=6−xQ(xQ6−xQ)(xA−xQyA−(6−xQ))=0|xA=10, yA=−10(xQ6−xQ)(10−xQ−10−(6−xQ))=0(xQ6−xQ)(10−xQ−10−6+xQ)=0(xQ6−xQ)(10−xQ−16+xQ)=0xQ(10−xQ)+(6−xQ)(−16+xQ)=010xQ−x2Q−96+6xQ+16xQ−x2Q=0−2x2Q+32xQ−96=0|:(−2)x2Q−16xQ+48=0xQ=16±√162−4⋅482xQ=16±√642xQ=16±82xQ=8±4xQ=8+4xQ=12yQ=6−xQyQ=6−12yQ=−6xQ=8−4xQ=4yQ=6−xQyQ=6−4yQ=2
The sum of all x and y-coordinates of all points Q
12−6+4+2=12