+0  
 
+2
2040
2
avatar+4622 

 

The triangle shown is an equilateral triangle with side length 12 cm. A side of the triangle is the diameter of the circle. If the sum of the areas of the two small shaded regions in square centimeters in simplest radical form is \(a\pi - b\sqrt{c}\), what is 

\(a+b+c\)?

 

 Apr 1, 2018
 #1
avatar+129899 
+3

Note...tertre....if we find the center of the circle and draw a radius  parallel to the bottom base of the large equilateral triangle, we will create another smaller equilateral triangle with a side of 6 cm

 

So.....the area of the sector formed by the two radial sides of this smaller equilateral triangle  will equal 1/6 of the circle whose radius  = 6  =

(1/6)pi (6^2)  =  6pi  cm^2        (1)

 

And the area of this smaller  equilateral triangle = 

(1/2)(6^2)*sqrt (3) / 2  =  

36sqrt (3) /4  =

9sqrt (3)  cm ^2       (2)

 

So....the   area of one of the shaded regions  is   (1)  - (2)  =

 

{ 6pi - 9sqrt (3)]  cm^2

 

So...by symmetry.....both shaded regions have an area of

 

2 [ 6pi - 9sqrt (3)]  cm^2  =

 

[ 12pi  - 18sqrt (3) ]    cm^2     

 

So

 

a + b + c  =

 

12 + 18 + 3

 

33

 

 

cool cool cool

 Apr 1, 2018
edited by CPhill  Apr 1, 2018
 #2
avatar+4622 
+2

Wow, your amazing CPhill! Thank you!

tertre  Apr 1, 2018

0 Online Users