The ellipse x2+4y2=4 and the hyperbola x2−m(y+2)2=1 are tangent. Compute m
Thanks in advance.
The ellipse x2+4y2=4 and the hyperbola x2−m(y+2)2=1 are tangent.
Compute m
My attempt
1. The coordinate of the ellipse and the hyperbola must be the same
x2+4y2=4x2=4−4y2x2−m(y+2)2=1|x2=4−4y24−4y2−m(y+2)2=1(1)
2. The slope at the ellipse and at the hyperbola must be equal
The slope at the ellipse∂f(x,y)∂x=2x∂f(x,y)∂y=8yFormula: dydx=−∂f∂x∂f∂ydydx=−2x8ydydx=−x4yThe slope at the hyperbola∂f(x,y)∂x=2x∂f(x,y)∂y=−2m(y+2)∗1Formula: dydx=−∂f∂x∂f∂ydydx=−2x−2m(y+2)dydx=xm(y+2)dydx=−x4y=xm(y+2)−x4y=xm(y+2)−14y=1m(y+2)m(y+2)=−4ym=−4yy+2
(1):4−4y2−m(y+2)2=1|m=−4yy+24−4y2+4y(y+2)(y+2)2=14−4y2+4y(y+2)=14−4y2+4y2+8y=14+8y=18y=−3y=−38
m=−4yy+2|y=−38m=−4(−38)−38+2m=322−38m=32138m=32∗813m=1213
x2=4−4y2|y=−38x2=4−4(38)2x2=4−4∗964x2=4−916x2=64−916x2=5516x=√554