Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
654
1
avatar+163 

The ellipse x2+4y2=4 and the hyperbola x2m(y+2)2=1 are tangent. Compute m

 

Thanks in advance.

 Aug 10, 2020
 #1
avatar+26396 
+1

The ellipse x2+4y2=4 and the hyperbola x2m(y+2)2=1 are tangent.

Compute m

 

My attempt

 

1. The coordinate of the ellipse and the hyperbola must be the same

x2+4y2=4x2=44y2x2m(y+2)2=1|x2=44y244y2m(y+2)2=1(1)

 

2. The slope at the ellipse and at the hyperbola must be equal

The slope at the ellipsef(x,y)x=2xf(x,y)y=8yFormula: dydx=fxfydydx=2x8ydydx=x4yThe slope at the hyperbolaf(x,y)x=2xf(x,y)y=2m(y+2)1Formula: dydx=fxfydydx=2x2m(y+2)dydx=xm(y+2)dydx=x4y=xm(y+2)x4y=xm(y+2)14y=1m(y+2)m(y+2)=4ym=4yy+2

 

(1):44y2m(y+2)2=1|m=4yy+244y2+4y(y+2)(y+2)2=144y2+4y(y+2)=144y2+4y2+8y=14+8y=18y=3y=38

 

m=4yy+2|y=38m=4(38)38+2m=32238m=32138m=32813m=1213

 

x2=44y2|y=38x2=44(38)2x2=44964x2=4916x2=64916x2=5516x=554

 

 

wink

 Aug 11, 2020
edited by heureka  Aug 11, 2020

0 Online Users