Processing math: 100%
 
+0  
 
+1
634
1
avatar+111 

In quadrilateral BCED we have BD=11BC=9, and CE=2. Sides ¯BD and ¯CE are extended past B and C, respectively, to meet at point A. If AC=28 and AB=24, then what is DE?

 

Any help would be appriciated. Thank you so much!

 May 28, 2020
 #1
avatar+23254 
+1

Notice that you have two triangles, triangle(ABC) and triangle(ADE).

 

You can use the Law of Cosines on each of these triangles.

 

First:  triangleABC):  BC2  =  AB2 + AC2 - 2·AB·AC·cos( angle(A) )

                                    92  =  242 + 282 - 2·24·28·cos( angle(A) )

   Solve this for angle(A).

 

then:  triangle(ADE):  DE2  =  AD2 + AE2 - 2·AD·AE·cos( angle(A) )

                                   DE2  =  352 + 302 - 2·35·30·cos( angle(A) )                 (use the value of angle(A) from above)

 

     Solve this for DE.

 May 28, 2020

2 Online Users

avatar