+0  
 
+1
832
3
avatar+13 

The coordinates of the vertices of trapezoid EFGH are E(−8, 8) , F(−4, 12) , G(−4, 0) , and H(−8, 4) . The coordinates of the vertices oftrapezoid E′F′G′H′ are E′(−8, 6) , F′(−5, 9) , G′(−5, 0) , and H′(−8, 3) .

 

Which statement correctly describes the relationship between trapezoid EFGH and trapezoid E′F′G′H′ ?

 

A. Trapezoid EFGH is not congruent to trapezoid E′F′G′H′ because there is no sequence of rigid motions that maps trapezoid EFGHto trapezoid E′F′G′H′ .

 

B. Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH to trapezoid E′F′G′H′ by reflecting it across the x-axis and then translating it up 14 units, which is a sequence of rigid motions.

 

C. Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH to trapezoid E′F′G′H′ by dilating it by a factor of 3/4 and then translating it 2 units left, which is a sequence of rigid motions.

 

D. Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH to trapezoid E′F′G′H′ by translating it down 2 units and then reflecting it over the y-axis, which is a sequence of rigid motions.

 Jan 24, 2018
 #1
avatar+130071 
+2

C. Trapezoid EFGH is congruent to trapezoid E′F′G′H′ because you can map trapezoid EFGH to trapezoid E′F′G′H′ by dilating it by a factor of 3/4 and then translating it 2 units left, which is a sequence of rigid motions.

 

 

cool cool cool

 Jan 24, 2018
 #2
avatar+9481 
+3

Wait a minute!!!

 

A. Trapezoid EFGH is not congruent to trapezoid E′F′G′H′ because there is no sequence of rigid motions that maps trapezoid EFGH to trapezoid E′F′G′H′ .

 Jan 24, 2018
 #3
avatar+130071 
+1

Ah, you are correct, hectictar....I missed the word "congruent '

 

 

 

cool cool cool

 Jan 24, 2018

3 Online Users

avatar