We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# geometry help!

0
386
1

The sum of the x-coordinates of the vertices of a triangle in the Cartesian plane equals $$\sqrt13$$. Let equal the sum of the x-coordinates of the midpoints of the sides of the triangle. Find $$S^2$$.

Mar 22, 2018

### 1+0 Answers

#1
+2

The sum of the x-coordinates of the vertices of a triangle in the Cartesian plane equals$$\sqrt{13}$$

Let S equal the sum of the x-coordinates of the midpoints of the sides of the triangle. Find S^2

Let the x vaues of the vertices be a,b,and c

$$a+b+c=\sqrt{13}$$

the x values of the midpoints of the sides are

$$\frac{a+b}{2},\:\;\frac{b+c}{2},\;\;\frac{a+c}{2}\\ sum=\frac{a+b}{2}+\frac{b+c}{2}+\frac{a+c}{2}\\ sum=\frac{a+b+b+c+a+c}{2}\\ sum=\frac{2(a+b+c)}{2}\\ S=a+b+c = \sqrt{13}\\ S^2=13$$

.
Mar 22, 2018