+0

# geometry help!!!!!

+1
313
2
+4223

Two sides of an isosceles triangle are 10 inches and 20 inches. If the shortest side of a similar triangle is 50 inches, what is the perimeter of the larger triangle?

Mar 28, 2018

#1
+7612
+3

The sides of the first triangle are either  10, 10, 20   or  10, 20, 20 .

The sides cannot be  10, 10, 20  because for them to be sides of a triangle, this must be true:

10 + 10  >  20

20 > 20   This is not true, so the sides of the triangle cannot be  10, 10, 20 .

So the sides of the first triangle are  10, 20, 20 .

The shortest side of this triangle is  10  inches.

The shortest side of a similar triangle is  50  inches.

Each side of the similar triangle is  5  times the side of the first triangle.

The sides of the larger triangle are  10 * 5, 20 * 5, 20 * 5

The sides of the larger triangle are  50, 100, 100

the perimeter of the larger triangle  =  50 + 100 + 100  =  250    (inches)

Mar 28, 2018

#1
+7612
+3

The sides of the first triangle are either  10, 10, 20   or  10, 20, 20 .

The sides cannot be  10, 10, 20  because for them to be sides of a triangle, this must be true:

10 + 10  >  20

20 > 20   This is not true, so the sides of the triangle cannot be  10, 10, 20 .

So the sides of the first triangle are  10, 20, 20 .

The shortest side of this triangle is  10  inches.

The shortest side of a similar triangle is  50  inches.

Each side of the similar triangle is  5  times the side of the first triangle.

The sides of the larger triangle are  10 * 5, 20 * 5, 20 * 5

The sides of the larger triangle are  50, 100, 100

the perimeter of the larger triangle  =  50 + 100 + 100  =  250    (inches)

hectictar Mar 28, 2018
#2
+4223
+3

Thanks so much, hectictar!!!!!!

tertre  Mar 28, 2018