+0  
 
+1
1362
2
avatar+4622 

Two sides of an isosceles triangle are 10 inches and 20 inches. If the shortest side of a similar triangle is 50 inches, what is the perimeter of the larger triangle?

 Mar 28, 2018

Best Answer 

 #1
avatar+9481 
+3

The sides of the first triangle are either  10, 10, 20   or  10, 20, 20 .

 

The sides cannot be  10, 10, 20  because for them to be sides of a triangle, this must be true:

 

10 + 10  >  20

 

20 > 20   This is not true, so the sides of the triangle cannot be  10, 10, 20 .

 

So the sides of the first triangle are  10, 20, 20 .

 

The shortest side of this triangle is  10  inches.

The shortest side of a similar triangle is  50  inches.

 

Each side of the similar triangle is  5  times the side of the first triangle.

 

The sides of the larger triangle are  10 * 5, 20 * 5, 20 * 5

The sides of the larger triangle are  50, 100, 100

 

the perimeter of the larger triangle  =  50 + 100 + 100  =  250    (inches)

 Mar 28, 2018
 #1
avatar+9481 
+3
Best Answer

The sides of the first triangle are either  10, 10, 20   or  10, 20, 20 .

 

The sides cannot be  10, 10, 20  because for them to be sides of a triangle, this must be true:

 

10 + 10  >  20

 

20 > 20   This is not true, so the sides of the triangle cannot be  10, 10, 20 .

 

So the sides of the first triangle are  10, 20, 20 .

 

The shortest side of this triangle is  10  inches.

The shortest side of a similar triangle is  50  inches.

 

Each side of the similar triangle is  5  times the side of the first triangle.

 

The sides of the larger triangle are  10 * 5, 20 * 5, 20 * 5

The sides of the larger triangle are  50, 100, 100

 

the perimeter of the larger triangle  =  50 + 100 + 100  =  250    (inches)

hectictar Mar 28, 2018
 #2
avatar+4622 
+3

Thanks so much, hectictar!!!!!!

tertre  Mar 28, 2018

1 Online Users