In triangle ABC, BC = 8. The length of median AD is 5. Let M be the largest possible value of AB^2 + AC^2, and let m be the smallest possible value. Find M - m.

 Oct 3, 2018

Here is the pic



You are being asked for the difference between the maximum and the minimum values of     \(b^2+c^2\)


Note:    \(0


\(x^2+5^2=b^2\\ x^2+25=b^2\\ \)                                       \( (8-x)^2+5^2=c^2\\ 64+x^2-16x+25=c^2\\ x^2-16x+89=c^2\\ \)



\(x^2+25+x^2-16x+89=b^2+c^2\\ 2x^2-16x+114=b^2+c^2\\ b^2+c^2=2x^2-16x+114\\\)

So we need a maximum and a minimum value for the expression on the right.

Consider the parabola



This is a concave up  parabola.    \(16^2-4*2*114 <0\)  so all values of y are positive.


The axis of symmetry is   \(x=\frac{-b}{2a}=\frac{--16}{2*2}=\frac{16}{4}=4\)


When x=4     \(y=2*4^2-16*4+114=32-64+114=82\)


So the smallest value appears to be 82 


The largest value would occur as x approaches 8 or 0 (x cannot actually be 8 or 0)


When x=0 or 8         y=114


\(82\le a^2+b^2<114\\~\\ 114-82=32\)


So the difference between the largest and smallest values of b^2+c^2  must be less than 32

 Oct 4, 2018

39 Online Users


New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.