+0

# Geometry Medians Help

+1
210
1
+464

In triangle ABC, BC = 8. The length of median AD is 5. Let M be the largest possible value of AB^2 + AC^2, and let m be the smallest possible value. Find M - m.

Oct 3, 2018

#1
+102441
+2

Here is the pic

You are being asked for the difference between the maximum and the minimum values of     $$b^2+c^2$$

Note:    $$0  \(x^2+5^2=b^2\\ x^2+25=b^2\\$$                                       $$(8-x)^2+5^2=c^2\\ 64+x^2-16x+25=c^2\\ x^2-16x+89=c^2\\$$

$$x^2+25+x^2-16x+89=b^2+c^2\\ 2x^2-16x+114=b^2+c^2\\ b^2+c^2=2x^2-16x+114\\$$

So we need a maximum and a minimum value for the expression on the right.

Consider the parabola

$$y=2x^2-16x+114$$

This is a concave up  parabola.    $$16^2-4*2*114 <0$$  so all values of y are positive.

The axis of symmetry is   $$x=\frac{-b}{2a}=\frac{--16}{2*2}=\frac{16}{4}=4$$

When x=4     $$y=2*4^2-16*4+114=32-64+114=82$$

So the smallest value appears to be 82

The largest value would occur as x approaches 8 or 0 (x cannot actually be 8 or 0)

When x=0 or 8         y=114

so

$$82\le a^2+b^2<114\\~\\ 114-82=32$$

So the difference between the largest and smallest values of b^2+c^2  must be less than 32

Oct 4, 2018