+0  
 
0
2568
3
avatar+188 

CD is tangent to circle O at D. Find the diameter of the circle for BC = 13 and DC = 30. Round to the nearest tenth. (The diagram is not drawn to scale.) 


 

 

A. 82.2

 

B. 56.2

 

C. 10.7

 

D. 69.2

 Apr 4, 2016

Best Answer 

 #2
avatar+188 
+5

Genius CPhill strikes again! Thanks a million...you made it so much easier to understand! Now, I'll know how to do this in the future. Muchas Gracias, Senor CPhill! Lol ^_^ 

 Apr 4, 2016
 #1
avatar+129852 
+10

Angle CDO is a right angle, because a radius drawn to a tangent always meets that tangent at right angles.

 

And by the Pythagorean Theorem, OD^2 + CD^2  = CO^2

 

But, CO  = (BC + OB)   and OB = OD  because they are radii

 

So.......by substitution.....

 

OD^2  + CD^2  = CO^2

 

OD^2 + CD^2 = (BC + OD)^2

 

OD^2  + 30^2  = ( 13 + OD)^2      simplify

 

OD^2 + 900  = 169 + 26OD + OD^2     subtract OD^2  from both sides

 

900 = 169 + 26OD      subtract 169 from both sides

 

731  = 26OD   divide both sides by 26

 

731/ 26  = OD   = about 28.1

 

But OD is a radius ...... and the diameter is twice this   = 56.2 =  "B"

 

 

 

cool cool cool

 Apr 4, 2016
 #2
avatar+188 
+5
Best Answer

Genius CPhill strikes again! Thanks a million...you made it so much easier to understand! Now, I'll know how to do this in the future. Muchas Gracias, Senor CPhill! Lol ^_^ 

Carpe♥Diem  Apr 4, 2016
 #3
avatar+129852 
0

Thanks, CD.......that property of the radius meeting a tangent at right angles comes in handy, at times....!!!

 

 

cool cool cool

 Apr 4, 2016

2 Online Users

avatar