In triangle ABC, angle B = 90 degrees and angle C = 30 degrees. Point D is on line segment BC such that angle ADB = 45 degrees, and DC=10. What is AB?
Thanks,
Hexa
DC = 10
BD = x
By 45 45 90 triangle side ratios, AB = x too.
By 30 60 90 triangle side ratios, BC/AB = sqrt(3).
(x+10)/x = sqrt(3)
x + 10 = xsqrt(3)
10 = x(sqrt(3) - 1)
10/(sqrt(3) - 1) = x
(10sqrt(3) + 10)/2 = x
5sqrt(3) + 5 = x
=^._.^=
In triangle ABC, angle B = 90 degrees and angle C = 30 degrees. Point D is on line segment BC such that angle ADB = 45 degrees, and DC=10. What is AB?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
∠B = 90º ∠C = 30º ∠ADB = 45º DC = 10
Let E be the point on BC so that DE ⊥ BC.
DE = 10(sin30)
EC = sqrt(102 - 52)
Angle DBE = 15º
BE = DE / tan15º
AB / BC = DE / EC
AB = 15.77350269