+0

# geometry problem

0
92
1

$$ABCD$$ is a rectangle with sides $$AB = 2$$ and $$BC = 1$$. $$EF$$ is a circular arc with point $$B$$ as its centre. Also, point $$E$$ is a midpoint of the segment $$CD$$. If the green region can be represented as $$\frac{1}{a}(b - \pi)$$, where $$a$$ and $$b$$ are both positive integers, find the value of $$a + b$$

Jan 27, 2021

#1
+118665
+1

Let A  = (0,0)

B  =  (2,0)

E  =(1,1)

BE    =  the radius of the  circle  =   sqrt  [ (2-1)^2  +(1-0)^2  ] = sqrt (2)

F =  (2 -sqrt (2)  ,  0)

EF  =  sqrt   [ ( 2 - sqrt (2)  - 1)^2  + 1^2  ]  =   sqrt  [ ( 1  -sqrt (2))^2  + 1  ) ]  =

sqrt [ 1 - 2sqrt (2) + 2  + 1]  =  sqrt  (4  -2sqrt (2) )  =  sqrt [ 4  -sqrt (8) ]

Using the  Law of  Cosines

EF^2   = BE^2 + BF^2  - 2 ( BE * BF)  cos EBF

4 -sqrt (8)  =  2  + 2  -  2(2) cos EBF

-sqrt (8)  =   -4 cos EBF

sqrt (8)  / 4 = cos EBF

2sqrt ( 2)   /4  =cos  EBF

sqrt (2)   / 2 = cos EBF

So EBF  = 45°

Area of  the  circle  =  pi  (sqrt (2))^2  ( 1/8)   =  pi/4

Area of shaded  region  =  area of  rectangle  -area of  circle  =

AB * BC  -  pi/4  =

2 * 1    -  pi/4   =

2  - pi/ 4   =

(1/4) ( 8  - pi)

a =  4     b  =   8

And their  sum  =  12

Jan 27, 2021