+0  
 
0
755
1
avatar+179 

\(M\) is the midpoint of \(\overline{PQ}\) and \(N\) is the midpoint of \(\overline{PR}\), and \(O\) is the intersection of \(\overline{QN}\) and \(\overline{RM}\), as shown. If \(\overline{QN}\perp\overline{PR}\)\(QN = 12\) ,and \(PR = 14\), then find \(OR\) 

 

Please help, thanks.

 Aug 17, 2020
edited by xCorrosive  Aug 17, 2020
edited by xCorrosive  Aug 17, 2020
edited by xCorrosive  Aug 17, 2020
edited by xCorrosive  Aug 17, 2020
 #1
avatar
0

OR = √65  laugh

 Aug 18, 2020

3 Online Users