We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
273
1
avatar

1)     

In $\triangle ABC$, we know that $AB = BC = 6\sqrt 3$ and $\angle ABC = 120^\circ.$ Find $AC.$
[asy] pair A,B,C;B = (0,0.5);C = (sqrt(3)/2,0);A = -C;draw(B--C--A--B);label(

 

 

2)

 

In quadrilateral $ABCD,$ $\angle A = \angle C =90^\circ,$ and $BC=CD.$ We know that $AB=\sqrt{13}$ and $AD=\sqrt{5}.$ What is $BC?$
[asy] size(5cm);pair A,B,C,D;A=(0,0);B=(sqrt(13),0);D=(0,sqrt(5));C=(2.8,2.9);draw(A--B--C--D--A);draw(rightanglemark(B,A,D)^^rightanglemark(D,C,B));label(

 

 

 

3)

 

Two diagonals of quadrilateral $ABCD$ are perpendicular to each other at $O.$ We know $AO=BO,CO=DO,$ and $AB+CD=5\sqrt{2}.$ What is $BD?$
[asy] size(5cm);pair A,B,C,D,O;A=(-1,0);B=(0,1);C=(3,0);D=(0,-3);draw(A--B--C--D--A--C^^B--D);draw(rightanglemark(C,O,B));label(

 

 

 

4)

 

In $\triangle PQR$, we have $\angle P = 30^\circ$$\angle RQP = 60^\circ$, and $\angle R=90^\circ$. Point $X$ is on $\overline{PR}$ such that $\overline{QX}$ bisects $\angle PQR$. If $PQ = 4\sqrt 3$, then what is $QX?$

[asy] pair P,Q,R,X;R = (0,0);Q=(0,0.5);P = (sqrt(3)/2,0);X = (0.5/sqrt(3),0);draw(X--Q--P--R--Q);label(

 

 

5)

Points $S$ and $T$ are on side $\overline{CD}$ of rectangle $ABCD$ such that $\overline{AS}$ and $\overline{AT}$ trisect $\angle DAB$. If $CT = 2\sqrt{3}-3$ and $DS = 1$, then what is the area of $ABCD$?

[asy] pair A,B,C,D,SS,T;C = (0,0);T = (0.3,0);SS = (1.5,0);D = (2.1,0);B = (0,0.6*sqrt(3));A = B+D;draw(T--A--SS--C--B--A--D--SS);label(

 Oct 28, 2017
 #1
avatar
0

Guys dont do this proble but do the other one one question beneath this one!!!

From the Creator of this Problem

 Oct 28, 2017

21 Online Users

avatar