Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
721
3
avatar

Triangle ABC has a right angle at B. Legs  ¯AB and ¯CB are extended past point B to points D and E, respectively, such that EAC=ACD=90. Prove that EBBD=ABBC

 

I understand that I need to use similar triangles for this one, which I am trying with EBA and ABC with AA similarity. Now I am stuck on proving EABACB.

 

Thanks in advance!

 Oct 24, 2018
 #1
avatar+998 
+19

Consider similar triangles ABE and BCD, then we have BDC=EAB.

 

For triangle ABE

tan(EAB)=EBAB.

 

For triangle BCD,

tan(BDC)=BCBD

 

Thus we have

EBAB=BCBDEBBD=ABBC.

 Oct 25, 2018
 #2
avatar+998 
+18

The figure below can be helpful in understanding the solution.

 

https://i.stack.imgur.com/2SopB.png

 

We are given ACD=EAC=90, so AE is parallel to CD, so EAB=BDC.

 

We also have EBA=CBD=90, so that AEB=BCD.

 

So angles of triangles ABE and BCE are the same, hence they are similar.

 Oct 25, 2018
 #3
avatar+130466 
+1

Thanks, Knockout...!!!!

 

Look at the figure below

 

 

 ∠ EBA  =  ∠ DBC  =   90°

 ∠ EAB  = ∠ CDB 

 

So....by  AA congruency  

 

Δ BAE   ~  ΔBDC  

 

So

 

AB / BE  =  BD / BC  

 

AB * BC   =  BD * BE

 

EB * BD    =  AB * BC

 

 

 

cool cool cool

 Oct 25, 2018

2 Online Users

avatar