Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
631
1
avatar+180 

Square ABCD has area 200. Point E lies on side ¯BC. Points F and G are the midpoints of ¯AE and ¯DE, respectively. Given that quadrilateral BEGF has area 34, what is the area of triangle GCD?

 Feb 5, 2021
 #1
avatar
0

We can use coordinates.  A = (0,sqrt(200)), B = (sqrt(200),sqrt(200)), C= (sqrt(200),0), D = (0,0).  Then G = (sqrt(200)/2,17), E = (sqrt(200),34), F = (sqrt(200),17), so the area of triangle GCD is 45.

 Feb 5, 2021

3 Online Users

avatar