Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
-1
56
1
avatar+1766 

In the diagram below, we have $\overline{BC}\parallel\overline{DE}$ and $AE = 20$. Find $AC$.

 Nov 25, 2023
 #1
avatar+1776 
0

Let $x = AC$. Since $\overline{BC}\parallel\overline{DE}$, we have that $\angle BAD$ and $\angle BCD$ are corresponding angles, and thus congruent. Therefore, $\triangle ABD \sim \triangle DCB$ by AA similarity.

From the similarity, we have ABBD=BDCBx20=20x+20. Cross-multiplying gives $x^2+20x = 20^2$ so $x^2+20x-400=0$. Factoring the quadratic gives $(x-20)(x+40) = 0$, so $x= \boxed{20}$. 

 Nov 25, 2023

2 Online Users