We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
186
3
avatar+256 

There are many ways to circumscribe a rectangle R about a 5 x 10 rectangle so that each vertex of the 5 x 10 rectangle is on a different side of R. Rectangle R's area is 110. what is the maximum area of a rectangle R that can be circumscribed about a 5 x 10 rectangle? 

 Mar 15, 2019

Best Answer 

 #1
avatar+23273 
+3

There are many ways to circumscribe a rectangle R about a 5 x 10 rectangle so
that each vertex of the 5 x 10 rectangle is on a different side of R.
Rectangle R's area is 110. what is the maximum area of a rectangle R
that can be circumscribed about a 5 x 10 rectangle?

Let:

\(\begin{array}{|rcll|} \hline a &=& W\sin(\theta) \\ c &=& W\cos(\theta) \\ \hline \end{array} \begin{array}{|rcll|} \hline d &=& L\sin(\theta) \\ b &=& L\cos(\theta) \\ \hline \end{array} \)

 

The area A of the circumscribing rectangle:

\(\begin{array}{|rcll|} \hline \mathbf{A(\theta)} &\mathbf{=}& \mathbf{(a+b)(c+d)} \\\\ A(\theta) &=& \Big( W\sin(\theta)+L\cos(\theta) \Big) \Big( W\cos(\theta)+L\sin(\theta) \Big) \\ &=& W^2\sin(\theta)\cos(\theta) +L\cdot W\sin^2(\theta) + LW\cos^2(\theta) + L^2\sin(\theta)\cos(\theta) \\ &=& (W^2+L^2)\sin(\theta)\cos(\theta) +L\cdot W\Big((\sin^2(\theta) + \cos^2(\theta)\Big) \quad | \quad \sin^2(\theta) + \cos^2(\theta) = 1 \\ &=& (W^2+L^2)\sin(\theta)\cos(\theta) +L\cdot W \quad | \quad \sin(\theta)\cos(\theta) = \dfrac{\sin(2\theta)}{2} \\ &=& (W^2+L^2)\dfrac{\sin(2\theta)}{2} +L\cdot W \\ && \color{red}\underline{\text{maximize}}:\\ && \qquad \color{red}\sin(2\theta) = 1 \\ && \qquad \color{red}2\theta = \arcsin(1) \\ && \qquad \color{red} 2\theta = 90^\circ \\ && \qquad \color{red} \theta = 45^\circ \\ A_{\text{max}}(45^\circ) &=& (W^2+L^2)\dfrac{\sin(2\cdot 45^\circ)}{2} +L\cdot W \\ &=& (W^2+L^2)\dfrac{\sin(90^\circ)}{2} +L\cdot W \quad | \quad \sin(90^\circ) = 1 \\ &=& \dfrac{1}{2} (W^2+L^2) +L\cdot W \quad | \quad \sin(90^\circ) = 1 \\ &=& \dfrac{1}{2} (W^2+L^2+2LW) \\ &=& \dfrac{1}{2} (W+L)^2 \\ \hline \end{array}\)

 

The maximum area:

\(\begin{array}{|rcll|} \hline A_{\text{max}} &=& \dfrac{1}{2} (W+L)^2 \\\\ &=& \dfrac{1}{2} (5+10)^2 \\\\ &=& \dfrac{15^2}{2} \\\\ &=& \dfrac{225}{2} \\\\ &=& 112.5 \\ \hline \end{array}\)

 

The maximum area is 112.5


source: https://www.youtube.com/watch?v=q3ZnOvhEJWo

 

laugh

 Mar 15, 2019
edited by heureka  Mar 15, 2019
edited by heureka  Mar 15, 2019
 #1
avatar+23273 
+3
Best Answer

There are many ways to circumscribe a rectangle R about a 5 x 10 rectangle so
that each vertex of the 5 x 10 rectangle is on a different side of R.
Rectangle R's area is 110. what is the maximum area of a rectangle R
that can be circumscribed about a 5 x 10 rectangle?

Let:

\(\begin{array}{|rcll|} \hline a &=& W\sin(\theta) \\ c &=& W\cos(\theta) \\ \hline \end{array} \begin{array}{|rcll|} \hline d &=& L\sin(\theta) \\ b &=& L\cos(\theta) \\ \hline \end{array} \)

 

The area A of the circumscribing rectangle:

\(\begin{array}{|rcll|} \hline \mathbf{A(\theta)} &\mathbf{=}& \mathbf{(a+b)(c+d)} \\\\ A(\theta) &=& \Big( W\sin(\theta)+L\cos(\theta) \Big) \Big( W\cos(\theta)+L\sin(\theta) \Big) \\ &=& W^2\sin(\theta)\cos(\theta) +L\cdot W\sin^2(\theta) + LW\cos^2(\theta) + L^2\sin(\theta)\cos(\theta) \\ &=& (W^2+L^2)\sin(\theta)\cos(\theta) +L\cdot W\Big((\sin^2(\theta) + \cos^2(\theta)\Big) \quad | \quad \sin^2(\theta) + \cos^2(\theta) = 1 \\ &=& (W^2+L^2)\sin(\theta)\cos(\theta) +L\cdot W \quad | \quad \sin(\theta)\cos(\theta) = \dfrac{\sin(2\theta)}{2} \\ &=& (W^2+L^2)\dfrac{\sin(2\theta)}{2} +L\cdot W \\ && \color{red}\underline{\text{maximize}}:\\ && \qquad \color{red}\sin(2\theta) = 1 \\ && \qquad \color{red}2\theta = \arcsin(1) \\ && \qquad \color{red} 2\theta = 90^\circ \\ && \qquad \color{red} \theta = 45^\circ \\ A_{\text{max}}(45^\circ) &=& (W^2+L^2)\dfrac{\sin(2\cdot 45^\circ)}{2} +L\cdot W \\ &=& (W^2+L^2)\dfrac{\sin(90^\circ)}{2} +L\cdot W \quad | \quad \sin(90^\circ) = 1 \\ &=& \dfrac{1}{2} (W^2+L^2) +L\cdot W \quad | \quad \sin(90^\circ) = 1 \\ &=& \dfrac{1}{2} (W^2+L^2+2LW) \\ &=& \dfrac{1}{2} (W+L)^2 \\ \hline \end{array}\)

 

The maximum area:

\(\begin{array}{|rcll|} \hline A_{\text{max}} &=& \dfrac{1}{2} (W+L)^2 \\\\ &=& \dfrac{1}{2} (5+10)^2 \\\\ &=& \dfrac{15^2}{2} \\\\ &=& \dfrac{225}{2} \\\\ &=& 112.5 \\ \hline \end{array}\)

 

The maximum area is 112.5


source: https://www.youtube.com/watch?v=q3ZnOvhEJWo

 

laugh

heureka Mar 15, 2019
edited by heureka  Mar 15, 2019
edited by heureka  Mar 15, 2019
 #2
avatar+104688 
0

Nice, heureka !!!!

 

 

cool cool  cool

CPhill  Mar 15, 2019
 #3
avatar+23273 
+2

Thank you, CPhill.

 

laugh

heureka  Mar 15, 2019

27 Online Users

avatar