+0  
 
+1
1784
2
avatar+168 

A spherical soap bubble lands on a horizontal wet surface and forms a hemisphere of the same volume. Given the radius of the hemisphere is $3\sqrt[3]{2}$cm, find the radius of the original bubble.

 Sep 24, 2017

Best Answer 

 #1
avatar+9488 
+1

volume of sphere  =43π(radius of sphere)3

 

volume of hemisphere  =1243π(radius of hemisphere)3

 

Plug in  332  for the radius of the hemisphere.

 

volume of hemisphere  =1243π(332)3 =23π33323 =23π272 =36π

 

The hemisphere has the same volume as the sphere, so....

 

                         volume of sphere  =  volume of hemisphere

 

43π(radius of sphere)3=36π

                                                                         Divide both sides by  pi .

43(radius of sphere)3=36

                                                                         Multiply both sides by  3/4  .

(radius of sphere)3=27

                                                                         Take the cube root of both sides.

radius of sphere=3 cm

 Sep 24, 2017
 #1
avatar+9488 
+1
Best Answer

volume of sphere  =43π(radius of sphere)3

 

volume of hemisphere  =1243π(radius of hemisphere)3

 

Plug in  332  for the radius of the hemisphere.

 

volume of hemisphere  =1243π(332)3 =23π33323 =23π272 =36π

 

The hemisphere has the same volume as the sphere, so....

 

                         volume of sphere  =  volume of hemisphere

 

43π(radius of sphere)3=36π

                                                                         Divide both sides by  pi .

43(radius of sphere)3=36

                                                                         Multiply both sides by  3/4  .

(radius of sphere)3=27

                                                                         Take the cube root of both sides.

radius of sphere=3 cm

hectictar Sep 24, 2017
 #2
avatar+130466 
+1

 

Nice, hectictar.....!!!!

 

cool cool cool

 Sep 24, 2017

1 Online Users