+0  
 
+1
86
2
avatar+157 

A spherical soap bubble lands on a horizontal wet surface and forms a hemisphere of the same volume. Given the radius of the hemisphere is $3\sqrt[3]{2}$cm, find the radius of the original bubble.

AdminMod2  Sep 24, 2017

Best Answer 

 #1
avatar+5552 
+1

volume of sphere  \(=\,\frac43\,*\,\pi\,*\, (\text{radius of sphere})^3\)

 

volume of hemisphere  \(=\,\frac12\,*\,\frac43\,*\,\pi\,*\, (\text{radius of hemisphere})^3\)

 

Plug in  \(3\sqrt[3]2\)  for the radius of the hemisphere.

 

volume of hemisphere  \(=\,\frac12\,*\,\frac43\,*\,\pi \,*\,(3\sqrt[3]2)^3 \\~\\ =\,\frac23\,*\,\pi\,*\,3^3\,*\,\sqrt[3]2^3 \\~\\ =\,\frac23\,*\,\pi\,*\,27\,*\,2 \\~\\ =\,36\pi\)

 

The hemisphere has the same volume as the sphere, so....

 

                         volume of sphere  =  volume of hemisphere

 

\(\frac43\,*\,\pi\,*\, (\text{radius of sphere})^3\,=\,36\pi\)

                                                                         Divide both sides by  pi .

\(\frac43\,*\, (\text{radius of sphere})^3\,=\,36\)

                                                                         Multiply both sides by  3/4  .

\((\text{radius of sphere})^3\,=\,27\)

                                                                         Take the cube root of both sides.

\(\text{radius of sphere}\,=\,3\,\text{ cm}\)

hectictar  Sep 24, 2017
Sort: 

2+0 Answers

 #1
avatar+5552 
+1
Best Answer

volume of sphere  \(=\,\frac43\,*\,\pi\,*\, (\text{radius of sphere})^3\)

 

volume of hemisphere  \(=\,\frac12\,*\,\frac43\,*\,\pi\,*\, (\text{radius of hemisphere})^3\)

 

Plug in  \(3\sqrt[3]2\)  for the radius of the hemisphere.

 

volume of hemisphere  \(=\,\frac12\,*\,\frac43\,*\,\pi \,*\,(3\sqrt[3]2)^3 \\~\\ =\,\frac23\,*\,\pi\,*\,3^3\,*\,\sqrt[3]2^3 \\~\\ =\,\frac23\,*\,\pi\,*\,27\,*\,2 \\~\\ =\,36\pi\)

 

The hemisphere has the same volume as the sphere, so....

 

                         volume of sphere  =  volume of hemisphere

 

\(\frac43\,*\,\pi\,*\, (\text{radius of sphere})^3\,=\,36\pi\)

                                                                         Divide both sides by  pi .

\(\frac43\,*\, (\text{radius of sphere})^3\,=\,36\)

                                                                         Multiply both sides by  3/4  .

\((\text{radius of sphere})^3\,=\,27\)

                                                                         Take the cube root of both sides.

\(\text{radius of sphere}\,=\,3\,\text{ cm}\)

hectictar  Sep 24, 2017
 #2
avatar+79786 
+1

 

Nice, hectictar.....!!!!

 

cool cool cool

CPhill  Sep 24, 2017

11 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details