What does BD equal to?
\(CA=\sqrt{20^2+16^2}=\sqrt{656}\)
\(BD^2+20^2=BA^2\)
\(AC^2+BA^2=(DC+BD)^2\) =>\(656+(BD^2+20^2)=(16+BD)^2\)
\(656+BD^2+400=256+32BD+BD^2\)
\(1056-256=800=32BD\)
\(BD=25\)
Thanks, James
Another method
We have the relationship that
BD / AD = AD / DC
BD / 20 = 20 / 16 cross-multiply
16 BD = 20 * 20
16 BD = 400
BD = 400 /16 = 25
BD = 20(20 / 16)