+0  
 
0
17
1
avatar+700 

In triangle $ABC,$ $AC = BC$ and $\angle ACB = 90^\circ.$ Points $P$ and $Q$ are on $\overline{AB}$ such that $P$ is between $A$ and $Q$ and $\angle QCP = 45^\circ.$ If cos ACP = 2/3, then find cos BCQ.

 Mar 12, 2024
 #1
avatar+129850 
+1

                                C

                              45

 

          A          P            Q                   B

 

arccos (2/3) = ACP  ≈  48.18°

 

Impossible   ACB   = 90

But ACP +QCP  = 45 + 48.18  = 93.18  which is > 90

 

cool cool cool 

 Mar 12, 2024

0 Online Users