+0  
 
0
1
1
avatar+823 

A cone contains two spheres, as shown below.  If the radii of the spheres are 1 and $4,$ then find the volume of the cone.

 
 Dec 31, 2024
 #1
avatar+130042 
+1

I oriented the spheres  like  this

 

 

We can set up similar  triangles AEC and BDC

 

We have that

 

AE/ AC = BD / BC

 

FC = x

AE= 4

AC = 6 + x

BD = 1

BC = 1 + x

 

So

4/ (6 +x) = 1/ (1 + x)

4(1 + x) = 6 +x

4 + 4x = 6 + x

3x = 2

x = 2/3

 

C = ( 4 + 2 + 2/3 , 0)  =  (20/3 , 0)

 

HC  = 6+ 2 + x  =   6 + 2 + 2/3  =  26/3  = height of cone

 

We can find DC  as  sqrt  ( (5/3)^2 -1 )  =sqrt ( 25/9 - 9/9) = sqrt (16/9) =  4/3

 

The equation of the tangent line to both circles through D  has the slope = -BD/DC =  -1/ ( 4/3) = -3/4

 

And the equation of this line  is

 

y = (-3/4)(x -20/3)

 

The intersection of this  line with the line x =- 4  gives us the radius of the cone =

 

y = (-3/4)(-4 -20/3)  = (-3/4)(-32/3) =  8 = GH

 

So the volume of the cone =  (1/3)pi  GH^2 * HC =  (1/3)pi * 8^2 * (26/3)  = (1664/9) pi

 

cool cool cool

 Dec 31, 2024

2 Online Users

avatar