+0  
 
-1
17
1
avatar+207 

In triangle $ABC$, $\angle ABC = 90^\circ$, and $D$ is on side $\overline{BC}$ such that $\overline{AD}$ bisects $\angle BAC$. If $AB = 4,$ $BC = 3$, and $AC = 5,$ then find the area of $\triangle ADC$. Round your answer to the nearest integer.

 May 23, 2024
 #1
avatar+1908 
0

Since we know AD bisects BAC, we have

BD  = 3 - x

CD =  x

Now, we can write

\(BD / AB = CD / AC \\ (3 - x) / 4 = x / 5 \\ 5 (3 - x) = 4x \\ 15 - 5x = 4x \\ 15 = 9x \\ x = 15/9 = 5/3 = CD\)

 

This just gives us

\([ ADC ] = (1/2) (CD) ( AB) = (1/2) ( 5/3) ( 4) = 10 / 3\)

 

Thanks! :)

 May 23, 2024

3 Online Users

avatar