+0  
 
0
7
1
avatar+948 

Two circles intersect at two points, $P$ and $Q$. The equations of the two circles are $x^2 + (y - 1)^2 = 1$ and $(x - 1)^2 + y^2 = 1$. Find the length PQ.

 Jul 14, 2024
 #1
avatar+129852 
+1

The circles have the same radius....set their equations equal

 

x^2 + (y -1)^2  = (x-1)^2 + y^2

x^2 + y^2 - 2y + 1 =  x^2 -2x + 1 + y^2

-2y =-2x

y = x

 

So

x^2 + ( x -1)^2 =1

2x^2 - 2x + 1 = 1

2x^2 - 2x =0

x^2 - x =0

x ( x -1)  = 0

 

Solving this produces x =0  and x =1

 

Since x = y

x = 0    y  = 0

x =1    y =1

 

Points of intersection are (0,0)  and (1,1)

 

PQ =  sqrt [ (1-0)^2 + (1-0)^2 ]  = sqrt 2

 

cool cool cool

 Jul 14, 2024

1 Online Users

avatar