Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
33
1
avatar+977 

In a certain regular polygon, the measure of each interior angle is $2$ times the measure of each exterior angle. Find the number of sides in this regular polygon.

 Jun 3, 2024

Best Answer 

 #1
avatar+1950 
+1

We can write an equation. 

The measure of an interior angle is (n2)(180)/n where n is the sidelengths. Since, the exterior angle is 180  minues the interior angle, we have

(n2)(180)/n=2·(180(n2)(180)/n)(n2)(180)/n=3602·(n2)(180)/n)3·(n2)(180)/n)=360(n2)(180)/n=120(n2)/n=2/3n2=2n/33n6=2nn=6

 

So our answer is 6. 

 

We can check our work.

A 6-sided polygon has an interior of 120 and exterior of 60.

 

Thank! :)

 Jun 3, 2024
 #1
avatar+1950 
+1
Best Answer

We can write an equation. 

The measure of an interior angle is (n2)(180)/n where n is the sidelengths. Since, the exterior angle is 180  minues the interior angle, we have

(n2)(180)/n=2·(180(n2)(180)/n)(n2)(180)/n=3602·(n2)(180)/n)3·(n2)(180)/n)=360(n2)(180)/n=120(n2)/n=2/3n2=2n/33n6=2nn=6

 

So our answer is 6. 

 

We can check our work.

A 6-sided polygon has an interior of 120 and exterior of 60.

 

Thank! :)

NotThatSmart Jun 3, 2024

3 Online Users