+0  
 
0
1
1
avatar+1552 

A right cone has a radius of 10 and a height of $20.$  Let $A$ and $B$ be diametrically opposite points on the base, and let $C$ be the midpoint of $B$ and the apex of the cone.  A bug crawls from $A$ to $C$ on the surface of the cone.  What is the length of the shortest path it can take?

 
 Dec 30, 2024
 #1
avatar+130031 
+1

Here's my best attempt ???

 

If we "unroll" the cone we have the following triangle, ADB

 

 

Circumference of the cone = triangle base =  2pi * radius of cone =    2pi * 10  = 20 pi  = AB 

 

So

A =  (-10pi , 0)

B = (10pi , 0)

D = height of the cone  = (0, 20)

C = (5pi ,10)

 

The shortest distance from A to C   =  sqrt [(-10 pi -5pi)^2 + ( (20 -10)^2] = 

 

sqrt [ 225pi^2 + 100] ≈  48.17

 

 

cool cool cool

 Dec 31, 2024

4 Online Users

avatar
avatar