+0  
 
0
14
1
avatar+939 

Let $k$ be a positive real number. The line $x + y = 3 + k$ and the circle $x^2 + y^2 = k$ are drawn. Find $k$ so that the line is tangent to the circle.

 Jul 24, 2024
 #1
avatar+130085 
+1

x + y = 3 + k

 

y = -x + (3 + k)

 

The slope of the line = -1

 

The slope of a tangent line at any point on the circle  = -x/y

 

Set the slopes equal

 

-x/y = -1

-x= -y

x = y

 

So....subbing into both equations

x + x = 3 + k  →  2x = 3 + k  →  x = (3 + k)/2   (1)

x^2 + x^2 = k  →  2x^2 = k   (2)

 

 

Sub (1)  into (2)

 

2 [ (3 + k)/2]^2 = k           simplify

 

k^2 + 6k + 9  = 2k

 

k^2 + 4k + 9 = 0

 

k cannot be a real number because the discriminant =  -20

 

cool cool cool

 Jul 25, 2024

2 Online Users

avatar