+0  
 
+1
4
1
avatar+895 

In trapezoid EFGH, \overline{EF} \parallel \overline{GH}, and P is the point on \overline{EH} such that EP:PH = 1:2. If the area of triangle PEF is 6, and the area of triangle PGH is 6, then find the area of trapezoid EFGH.

 Oct 21, 2024
 #1
avatar+15000 
+1

Find the area of trapezoid EFGH.

 

The height of the trapezoid EFGH is h. 

\(A_{EFP}=\frac{\overline{EF}}{2} \cdot \frac{h}{3}=6\\ \overline{EF}=\frac{36}{h}\\ A_{GHP}=\frac{\overline{GH}}{2} \cdot \frac{2h}{3}=6\\ \overline{GH}=\frac{18}{h}\)

 

\(A_{EFGH}=\frac{\frac{36}{h}+\frac{18}{h}}{2}\cdot h\\ \color{blue}A_{EFGH}=27\)

 

The area of trapezoid EFGH is 27.

 

laugh !

 Oct 21, 2024
edited by asinus  Oct 22, 2024
edited by asinus  Oct 22, 2024
edited by asinus  Oct 22, 2024

0 Online Users