In trapezoid EFGH, \overline{EF} \parallel \overline{GH}, and P is the point on \overline{EH} such that EP:PH = 1:2. If the area of triangle PEF is 6, and the area of triangle PGH is 6, then find the area of trapezoid EFGH.
Find the area of trapezoid EFGH.
The height of the trapezoid EFGH is h.
\(A_{EFP}=\frac{\overline{EF}}{2} \cdot \frac{h}{3}=6\\ \overline{EF}=\frac{36}{h}\\ A_{GHP}=\frac{\overline{GH}}{2} \cdot \frac{2h}{3}=6\\ \overline{GH}=\frac{18}{h}\)
\(A_{EFGH}=\frac{\frac{36}{h}+\frac{18}{h}}{2}\cdot h\\ \color{blue}A_{EFGH}=27\)
The area of trapezoid EFGH is 27.
!