+0  
 
0
1
1
avatar+1520 

In triangle PQR, M is the midpoint of $\overline{QR}.$ Find $PM.$
PQ = 5, PR = 8, QR = 11

 
 Jan 5, 2025
 #1
avatar+130070 
+2

                P

       5                    8

Q               M                   R

        5.5              5.5

 

Note that cos RMP = -cos QMP

 

Law of Cosines

 

PQ^2   = QM^2 + PM^2 - 2 (QM * PM) cos (QMP)    

PR^2  =  RM^2  + PM^2 - 2(RM * PM)(-cos (QMP)   

 

5^2 = 5.5^2 + PM^2 - 2(5.5 * PM) cos (QMP)

8^2 = 5.5^2 + PM^2 + 2(5.5 *PM) cos (QMP)      add these

 

89 = 60.5 + 2PM^2

 

28.5 = 2PM^2

 

PM =  sqrt [ 28.5 / 2 ]  ≈  3.77 

 

cool cool cool

 Jan 5, 2025

1 Online Users