Find the value of x that makes each statement true
sin (x/3 + 10) = cos x
Since sine and cosine are co-functions, we have....
x/3 + 10 + x = 90 subtract 10 from both sides and simplify
(4/3)x = 80 multiply both sides by 3/4
x = (3/4)* 80 = 60°
Find the value of x that makes each statement true
sin (x/3 + 10) = cos x
\(sin(\frac{x}{3}+10)=cosx\)
\(cosx=\sqrt{1-sin^2x}\)
\(sin(\frac{x}{3}+10)=\sqrt{1-sin^2x}\)
\(sin^2(\frac{x}{3}+10)=1-sin^2x\)
\(x_1 = 12,52765316663493rad\)
\(x_2 = -6,205750411731104rad\)
!
Find the value of x that makes each statement true
sin (x/3 + 10) = cos x
1. x1 = ?
\(\begin{array}{|rcll|} \hline \sin(\frac{x}{3}+10^{\circ}) &=& \cos(x) \quad & | \quad \cos(x) = \sin(90^{\circ}-x) \\ \sin(\frac{x}{3}+10^{\circ}) &=& \sin(90^{\circ}-x) \\ \frac{x}{3}+10^{\circ} &=& 90^{\circ}-x \\ x+\frac{x}{3}+10^{\circ} &=& 90^{\circ} \\ x+\frac{x}{3} &=& 80^{\circ} \\ x\cdot (1+\frac{1}{3}) &=& 80^{\circ} \\ x\cdot (\frac{4}{3}) &=& 80^{\circ} \\ x &=& 80^{\circ}\cdot \frac{3}{4} \\ \mathbf{x_1} & \mathbf{=} & \mathbf{60^{\circ}} \\ \hline \end{array}\)
2. x2 = ?
\(\begin{array}{|rcll|} \hline \sin(\frac{x}{3}+10^{\circ}) &=& \cos(x) \quad & | \quad \cos(x) = \cos(-x) \\ \sin(\frac{x}{3}+10^{\circ}) &=& \cos(-x) \quad & | \quad \cos(-x) = \sin(90^{\circ}-(-x)) \\ \sin(\frac{x}{3}+10^{\circ}) &=& \sin(90^{\circ}-(-x)) \\ \sin(\frac{x}{3}+10^{\circ}) &=& \sin(90^{\circ}+x) \\ \frac{x}{3}+10^{\circ} &=& 90^{\circ}+x \\ x-\frac{x}{3} &=& -80^{\circ} \\ x\cdot (1-\frac{1}{3}) &=& -80^{\circ} \\ x\cdot (\frac{2}{3}) &=& -80^{\circ} \\ x &=& -80^{\circ}\cdot \frac{3}{2} \\ \mathbf{x_2} & \mathbf{=} & \mathbf{-120^{\circ} } \\ \hline \end{array}\)