Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
389
1
avatar

Find the ratio of the area of a regular hexagon with sides of 1 unit to the area of an equilateral triangle with sides of 2 units. (Nots: "regular" means that all of the sides and angles are equal)

 Jun 13, 2021
 #1
avatar+526 
+2

ABCDEF is a regular hexagon and PQR is an equilateral triangle.

In ABCDEF, 

area(△AOB) = area(△BOC) = area(△COD) = area(△DOE) = area(△EOF) = area(△FOA) 

 

⇒area(ABCDEF) = area(△AOB + △BOC + △COD + △DOE + △EOF + △FOA) 

                            =34+34+34+34+34+34

                            =6×34

                            =332 sq. units

 

⇒area(△PQR) =34×4

                        =3 sq. units

 

area(ABCDEF)area(PQR)=32=3:2

 

 

smiley

 Jun 14, 2021

2 Online Users

avatar
avatar