Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
47
1
avatar+1729 

In triangle $ABC$, $M$ is the midpoint of $\overline{BC}$, and $N$ is the midpoint of $\overline{AC}$.  The perpendicular bisectors of $BC$ and $AC$ intersect at a point $O$ inside the triangle.  If $\angle AOB = 90^\circ$, then find the measure of $\angle MON$, in degrees.

 Mar 31, 2024
 #1
avatar+15069 
+1

Find the measure of angle MON, in degrees.

 

α,β,γ be  of ABC ACO is 1BCO is 2

1=α45°2=β45°AOB=90°γ=1290°=45° (Peripheral angle on the perimeter)γ=1+2=45°α+β=180°γ=180°45°=135°

 MON=(180°90°1)+(180°90°2) MON=180°(1+2)=180°45° MON=135°

 

laugh !

 Mar 31, 2024
edited by asinus  Apr 1, 2024

0 Online Users