1.
tan x + sec x = 2
sinx / cos x + 1/cos x = 2
sinx + 1 = 2cos x square bith sides
sin^2 x + 2sin x + 1 = 4cos^2 x
sin^2 x + 2sin x + 1 = 4 (1-sin^2 x)
sin^2 x + 2sin x + 1 = 4 - 4sin^2 x
5sin^2 x + 2sin x - 3 = 0
(5sin x -3 )(sinx + 1) = 0
5sin x - 3 = 0 sin x + 1 = 0
5sinx = 3 sin x = -1
sin x = 3/5 x = -pi/2 reject
cos x = sqrt [ 5^2 - 3^2 ] / 5 = sqrt [ 16 ] / 5 = 4 / 5
2.
Call the point where the diagonals meet = O
Triangle SOR similar to triangle XOY
XY / SR = 5/28
So...height of triangle XOY to height of triangle SOR = 5/28
Then there are 5 + 28 = 33 equal parts in 1/2 height of the trapezoid
And triangle POQ similar to triangle SOR
And height of POQ to height of SOR = [ 5 +33] / 28 = 38/28 = 19/14
So
PQ = (19/14)SR= (19/14) * 28 = 38