In square ABCD, P is on BC such that BP = 4 and PC = 1, and Q is on line CD such that DQ = 2 and QC = 3. Find sin angle PAQ.
First, we have to find the values of PA, PQ, and AQ.
Using the pythagorean theorem for all 3 of them, we get
\(AP = \sqrt{4^2+5^2}=\sqrt{41}\)
\(PQ = \sqrt{1^2+3^2}=\sqrt{10}\)
\(AQ=\sqrt{1^2+5^2} = \sqrt{26}\)
Now, we apply the Law of Cosines. According to the law,
\(PQ^2 = AQ^2 + PA^2 - 2(AQ * PA) * cos (PAQ)\)
Plugging in all the values of AP, PQ, and AQ we figured out, we get
\(10=26+41-2(\sqrt{26}*\sqrt{41})*cos(PAQ)\\ 10=67-2\sqrt{1066}*cos(PAQ)\\ cos(PAQ) = \frac{-57}{-2\sqrt{1066}}\)
Now, sin(PAQ) is just 1 - cos(PAQ), so we get
\(sin(PAQ)=1- \frac{-57}{-2\sqrt{1066}}\\ sin(PAQ)=1+ \frac{57}{-2\sqrt{1066}}\\ sin(PAQ) = \frac{-2\sqrt{1066}+57}{-2\sqrt{1066}}\)
This is approxaimtely \(0.12709645414\)
So our answer is \(\frac{-2\sqrt{1066}+57}{-2\sqrt{1066}}\)
Thanks! :)
A B
4
P
1
D 2 Q 3 C
PA = sqrt [ 5^2 + 4^2] = sqrt 41
PQ = sqrt [ 3^2 + 1^2] = sqrt 10
AQ = sqrt [ 5^2 + 2^2] = sqrt 29
Law of Cosines
PQ^2 = PA^2 + AQ^2 - 2(PA * AQ) cos (PAQ)
10 = 41 + 29 - 2 ( sqrt [41 * 29] ) cos (PAQ)
cos (PAQ) = (10 - 41 - 29 ) / (-2 *sqrt [ 41 * 29 ] ) = 30 / sqrt 1189
sin (PAQ) = sqrt [1189 - 30^2 ] / sqrt 1189 = sqrt [289] / sqrt 1189 = 17 / sqrt 1189