+0  
 
0
53
2
avatar

Find the area of triangle ACE.

 

 Sep 20, 2021
 #1
avatar
-1

[ACE] = [1/2(17*30)] - (4*17/2) - (132)/2 - 4*13

 Sep 21, 2021
edited by Guest  Sep 21, 2021
 #2
avatar+114880 
+1

AE= sqrt(17^2 + 30^2) = 

 

\(AE=\sqrt{17^2+30^2}\\ AE= \sqrt{1189}\;cm\\~\\ EC=\sqrt{13^2+13^2}\\ EC=\sqrt{338}\;cm\\~\\ AC=\sqrt{17^2+4^2}\\ AC=\sqrt{305}\\ \)

 

Heron's formula for finding area.

 

Let a,b,c   be the lengths of the sides of a triangle. The area is given by:

 

\(area=\sqrt{p(p-a)(p-b)(p-c)}\qquad \text{where p=half the perimeter}\\~\\ p=\frac{\sqrt{1189}+\sqrt{338}+\sqrt{305}}{2}\\~\\ \)

 

You can do the substitutions to find the answer. 

 Sep 21, 2021

34 Online Users

avatar