+0  
 
0
190
1
avatar+177 

What is the inverse of the following statement? If it is raining, then I will carry an umbrella. (1 point)

If I carry an umbrella, then it is raining.

If I do not carry an umbrella, then it is not raining.

If it is not raining, then I will not carry an umbrella.

I will carry an umbrella if and only if it is raining.

 

 

Write the following reversible statement as a Biconditional: If two perpendicular lines intersect, they form four 90° angles. (1 point)

Two intersecting lines are perpendicular if and only if they form four 90° angles.

Two intersecting, perpendicular lines do not form four angles.

Four 90° angles are formed by intersecting lines.

Perpendicular lines do not intersect.

party.girl286  Jan 23, 2018

Best Answer 

 #1
avatar+2143 
+1

A conditional statement is structured in the following format: \(\text{if }\underbrace{\text{hypothesis, }}\text{then }\underbrace{\text{condition}}\\ \hspace{14mm}p\hspace{29mm}q\)

 

1) The inverse simply negates of both the hypothesis and the condition. It is written in the following format: \(\text{if not }\underbrace{\text{hypothesis, }}\text{then not }\underbrace{\text{condition}}\\ \hspace{21mm}p\hspace{37mm}q\). In this case, the inverse of the conditional statement would read "If it is not raining, then I will not carry an umbrella. This answer corresponds with the third answer choice. 

 

2) A biconditional statement is written in the following format: \(\underbrace{\text{Hypothesis, }}\text{if and only if }\underbrace{\text{condition}}\\ \hspace{10mm}p\hspace{45mm}q\). In this case, the biconditional statement would read "Two perpendicular lines intersect, if and only if they form four 90° angles." This answer corresponds with the first answer choice listed. 

TheXSquaredFactor  Jan 23, 2018
 #1
avatar+2143 
+1
Best Answer

A conditional statement is structured in the following format: \(\text{if }\underbrace{\text{hypothesis, }}\text{then }\underbrace{\text{condition}}\\ \hspace{14mm}p\hspace{29mm}q\)

 

1) The inverse simply negates of both the hypothesis and the condition. It is written in the following format: \(\text{if not }\underbrace{\text{hypothesis, }}\text{then not }\underbrace{\text{condition}}\\ \hspace{21mm}p\hspace{37mm}q\). In this case, the inverse of the conditional statement would read "If it is not raining, then I will not carry an umbrella. This answer corresponds with the third answer choice. 

 

2) A biconditional statement is written in the following format: \(\underbrace{\text{Hypothesis, }}\text{if and only if }\underbrace{\text{condition}}\\ \hspace{10mm}p\hspace{45mm}q\). In this case, the biconditional statement would read "Two perpendicular lines intersect, if and only if they form four 90° angles." This answer corresponds with the first answer choice listed. 

TheXSquaredFactor  Jan 23, 2018

32 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.