+0  
 
0
1
1
avatar+346 

Let $O$ be the origin. Points $P$ and $Q$ lie in the first quadrant. The slope of line segment $\overline{OP}$ is $4,$ and the slope of line segment $\overline{OQ}$ is $5.$ If $OP = OQ,$ then compute the slope of line segment $\overline{PQ}.$

 

Note: The point $(x,y)$ lies in the first quadrant if both $x$ and $y$ are positive.

 
 Dec 12, 2024
 #1
avatar+129895 
+1

Draw a unit circle at the origin, O, and let P and Q loe pn this  circle

 

tan OP  = 4/1

cos OP = 1/sqrt(4^2 + 1^2)  = 1/sqrt 17      sin OP  = 4/sqrt 17

 

tan  OQ  = 5/1

cos OQ = 1/sqrt (5^2 + 1^2)  = 1/sqrt 26     sin QP = 5/sqrt  26

 

We can write P  as ( 1/sqrt 17 , 4/sqrt 17)

We can write Q as ( 1/sqrt 26 , 5/sqrt 26)

 

Slope  PQ  =

 

(5/sqrt 26 - 4/sqrt 17)  / ( 1/sqrt 26 - 1/sqrt 17)  =

 

(5sqrt 17- 4sqrt 26) / ( sqrt 17 - sqrt 26)  =

 

( 5 sqrt17 -4sqrt 26) (sqrt 17 + sqrt 26) / (17 -26)  =

 

(5*17 + sqrt 26 * sqrt 17 - 4*26) / -9

 

(-19 + sqrt 442) / -9 = 

 

(sqrt 442 - 19) / 9   ≈  -0.224

 

cool cool cool

 Dec 13, 2024, 5:59:08 PM

3 Online Users

avatar
avatar