Let A, B, and C be the angles of a triangle. Given that tan (A/2) = 1/4 and tan (B/2) = \(1/5\), find tan (C/2).
Using the half-angle formulae:
\(tan(A)=\frac{2tan(\frac{A}{2})}{1-tan^2(\frac{A}{2})}=\frac{2(\frac{1}{4})}{1-(\frac{1}{4})^2}=\frac{8}{15}\) .........(1)
\(tan(B)=\frac{2tan(\frac{B}{2})}{1-tan^2(\frac{B}{2})}=\frac{2(\frac{1}{5})^2}{1-(\frac{1}{5})^2}=\frac{5}{12}\) ..........(2)
\(tan(C)=\frac{2tan(\frac{C}{2})}{1-tan^2(\frac{C}{2})}\) ........(*)
Since the angles in a triangle sum to 180 degrees, then:
\(A+B+C=180 \iff tan(A+B+C)=0\) (Take tan of both sides).
Thus, consider: \(tan((A+B)+C)=\frac{tan(A+B)+tan(C)}{1-tan(A+B)tan(C)}=0\) ........(**)
Now consider \(tan(A+B)\), and using (1) and (2) gives:
\(tan(A+B)=\frac{tan(A)+tan(B}{1-tan(A)tan(B)}=\frac{\frac{8}{15}+\frac{5}{12}}{1-(\frac{8}{15}*\frac{5}{12})}=\frac{171}{140}\) ......(***)
Thus, substituting (***) in (**) gives:
\(\frac{171}{140}+tan(C)=0 \iff tan(C)=-\frac{171}{140}\)
Next, consider (*) and let \(t=tan(\frac{C}{2})\)
Then,
\(-\frac{171}{140}=\frac{2t}{1-t^2} \iff 171t^2-171=280t \)
Then, \( 171t^2-280t-171=0 \iff(19t+9)(9t-19)=0\)
Thus, \(t_1=\frac{19}{9},t_2=-\frac{9}{19}\)
But, C is a positive angle (Angle in a triangle), hence \(t=tan(\frac{C}{2})>0\)
Therefore, only \(t_1=\frac{19}{9}\) is the desired solution.
Thus, \(tan(\frac{C}{2})=\frac{19}{9}\)
Hope this helps, and I think there is a simpler solution than this!
Using the half-angle formulae:
\(tan(A)=\frac{2tan(\frac{A}{2})}{1-tan^2(\frac{A}{2})}=\frac{2(\frac{1}{4})}{1-(\frac{1}{4})^2}=\frac{8}{15}\) .........(1)
\(tan(B)=\frac{2tan(\frac{B}{2})}{1-tan^2(\frac{B}{2})}=\frac{2(\frac{1}{5})^2}{1-(\frac{1}{5})^2}=\frac{5}{12}\) ..........(2)
\(tan(C)=\frac{2tan(\frac{C}{2})}{1-tan^2(\frac{C}{2})}\) ........(*)
Since the angles in a triangle sum to 180 degrees, then:
\(A+B+C=180 \iff tan(A+B+C)=0\) (Take tan of both sides).
Thus, consider: \(tan((A+B)+C)=\frac{tan(A+B)+tan(C)}{1-tan(A+B)tan(C)}=0\) ........(**)
Now consider \(tan(A+B)\), and using (1) and (2) gives:
\(tan(A+B)=\frac{tan(A)+tan(B}{1-tan(A)tan(B)}=\frac{\frac{8}{15}+\frac{5}{12}}{1-(\frac{8}{15}*\frac{5}{12})}=\frac{171}{140}\) ......(***)
Thus, substituting (***) in (**) gives:
\(\frac{171}{140}+tan(C)=0 \iff tan(C)=-\frac{171}{140}\)
Next, consider (*) and let \(t=tan(\frac{C}{2})\)
Then,
\(-\frac{171}{140}=\frac{2t}{1-t^2} \iff 171t^2-171=280t \)
Then, \( 171t^2-280t-171=0 \iff(19t+9)(9t-19)=0\)
Thus, \(t_1=\frac{19}{9},t_2=-\frac{9}{19}\)
But, C is a positive angle (Angle in a triangle), hence \(t=tan(\frac{C}{2})>0\)
Therefore, only \(t_1=\frac{19}{9}\) is the desired solution.
Thus, \(tan(\frac{C}{2})=\frac{19}{9}\)
Hope this helps, and I think there is a simpler solution than this!