+0  
 
0
2
1
avatar+1552 

The total surface of a cone \mathcal{C}, including its base, is painted.  A plane parallel to the base of the cone divides the cone into a smaller cone $\mathcal{A}$ and a frustum $\mathcal{B},$ so that the ratio of the volume of $\mathcal{A}$ to the volume of $\mathcal{B}$ is equal to the ratio of the painted surface area of $\mathcal{A}$ to the painted surface area of $\mathcal{B}.$  If the radius of the cone $\mathcal{C}$ is $1,$ and its height is $1,$ then find the ratio of the height of $\mathcal{A}$ to the height of $\mathcal{C}.$

 
 Dec 30, 2024
 #1
avatar+130031 
+1

See the following

 

 

 

Triangle CDE similar to triangle CHB

CH = HB

So CD = DE

The radius of the smaller cone, DE  = its height, DC

Call these, x

Volume of smaller cone =  (1/3) base^2 * height = (1/3) pi * x^3

Volume of frustum  =   pi (1-x) (1 + x^2 + x) / 3  

 

Lateral Surface area of  smallercone =  pi * x * L 

L = slant height of smaller cone =  sqrt ( x^2 +  x^2) =  sqrt 2 * x

pi * x * sqrt (x^2 + x^2)  =   pi*  sqrt 2  * x^2

Lateral surface area of large cone  = pi * 1 * sqrt ( 1 + 1) =  pi * 1 * sqrt (2) = pi* sqrt 2

Surface area of frustum = lateral surface area of large  cone - lateral surface area of smaller cone  plus area of base of large cone = 

pi * sqrt 2 - pi sqrt 2 * x^2  =     pi *sqrt 2 * (1 -x^2)

plus area of circular base = pi * 1^2  = pi 

pi sqrt 2 * (1-x^2) + pi  =

pi [sqrt 2 * ( 1 -x^2) + 1]

 

So we have  the ratio of the volumes = 

[ (1/3) pi * x^3] / [  pi(1-x) (x^2 + x + 1 )/3 ] =  [   x^3 ]/ [ (1-x)(x^2 + x + 1)]   =  M

 

Ratio of surface areas =

[pi *sqrt 2 * x^2] / [ pi * sqrt 2 *(1-x^2) + pi]  =  [sqrt 2 * x^2 ] / [ sqrt2 * (1-x^2) + 1]  = N

 

Set M = N and solve for x     { let WolframAlpha  do the heavy lifting here !! }

 

x= 2 -sqrt 2 =  height of small  cone

 

Height of A to Height of C =  ( 2  - sqrt 2 ) / 1  =   2 -sqrt 2 

 

cool cool cool

 Dec 31, 2024

3 Online Users

avatar
avatar