+0  
 
0
1
1
avatar+697 

In triangle $PQR,$ $M$ is the midpoint of $\overline{QR}.$ Find $PM.$
PQ = 5, PR = 8, QR = 11

 
 Jan 12, 2025
 #1
avatar+130099 
+1

       P

 5                  8

Q         M           R 

      5.5       5.5

 

Note that cos PMR  =  -cos PMQ

 

Law of Cosines

PQ^2  = PM^2 + QM^2  - 2 ( PM * QM) cos (PMQ)

PR^2^2  = PM^2 + RM^2 - 2(PM * RM) cos (PMR)

 

5^2 = PM^2 + 5.5^2 - 2 (PM * QM) cos (PMQ)

8^2 = PM^2 + 5.5^2  - 2(PM * 5.5) (- cos PMQ)

 

5^2 = PM^2 + 5.5^2 - 2 (PM * QM) cos (PMQ)

8^2 = PM^2 + 5.5^2  + 2(PM * 5.5) ( cos PMQ)        add these

 

89 = 2PM^2 + 60.5

 

[89 - 60.5] / 2  =  PM^2

 

PM =  sqrt [ 28.5 / 2 ]   ≈  3.775

 

 

cool cool cool

 Jan 12, 2025

4 Online Users

avatar