+0  
 
0
86
1
avatar

In triangle JKL, we have JK = JL = 25 and KL = \(10\). Find the circumradius

 Apr 16, 2022

Best Answer 

 #1
avatar+9459 
+1

We calculate the area of the triangle.

 

Area of triangle JKL = \(\dfrac12 \cdot 10 \cdot \sqrt{25^2 - \left(\dfrac{10}2\right)^2} = 50\sqrt 6\)

 

Then, we use the formula \(\text{circumradius} = \dfrac{\text{product of 3 sides}}{4(\text{area})}\)

\(\text{circumradius} = \dfrac{25(25)(10)}{4(50\sqrt 6)} = \dfrac{125}{24}\sqrt6\)

 

Wolfram alpha output

 Apr 16, 2022
 #1
avatar+9459 
+1
Best Answer

We calculate the area of the triangle.

 

Area of triangle JKL = \(\dfrac12 \cdot 10 \cdot \sqrt{25^2 - \left(\dfrac{10}2\right)^2} = 50\sqrt 6\)

 

Then, we use the formula \(\text{circumradius} = \dfrac{\text{product of 3 sides}}{4(\text{area})}\)

\(\text{circumradius} = \dfrac{25(25)(10)}{4(50\sqrt 6)} = \dfrac{125}{24}\sqrt6\)

 

Wolfram alpha output

MaxWong Apr 16, 2022

28 Online Users