+0  
 
0
88
1
avatar

Two sectors of a circle of radius 12 overlap as shown, with P and R as the centers of the respective circles. Determine the area of the shaded region.

 

 Jun 22, 2022

Best Answer 

 #1
avatar+2448 
0

Let the intersection point directly above \(P\) as \(A\), and let the point that is to the left of \(P\) be \(B\)

 

The area of \(\triangle ABP = 12 \times 12 \div 2 = 72\) 

 

The area of the circular region \(ABP\) is \( {1 \over 4} \times 12^2 \times \pi = 36 \pi \)

 

Now, note that the area of the shaded region is \(2 (\text{circular region of ABP} - \triangle ABP) \)

 

Substituting what we know, we find that the area of the shaded region is \(\color{brown}\boxed{72 \pi - 144}\)

 Jun 23, 2022
 #1
avatar+2448 
0
Best Answer

Let the intersection point directly above \(P\) as \(A\), and let the point that is to the left of \(P\) be \(B\)

 

The area of \(\triangle ABP = 12 \times 12 \div 2 = 72\) 

 

The area of the circular region \(ABP\) is \( {1 \over 4} \times 12^2 \times \pi = 36 \pi \)

 

Now, note that the area of the shaded region is \(2 (\text{circular region of ABP} - \triangle ABP) \)

 

Substituting what we know, we find that the area of the shaded region is \(\color{brown}\boxed{72 \pi - 144}\)

BuilderBoi Jun 23, 2022

9 Online Users

avatar
avatar