Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
278
1
avatar

Two sectors of a circle of radius 12 overlap as shown, with P and R as the centers of the respective circles. Determine the area of the shaded region.

 

 Jun 22, 2022

Best Answer 

 #1
avatar+2668 
0

Let the intersection point directly above P as A, and let the point that is to the left of P be B

 

The area of ABP=12×12÷2=72 

 

The area of the circular region ABP is 14×122×π=36π

 

Now, note that the area of the shaded region is 2(circular region of ABPABP)

 

Substituting what we know, we find that the area of the shaded region is 72π144

 Jun 23, 2022
 #1
avatar+2668 
0
Best Answer

Let the intersection point directly above P as A, and let the point that is to the left of P be B

 

The area of ABP=12×12÷2=72 

 

The area of the circular region ABP is 14×122×π=36π

 

Now, note that the area of the shaded region is 2(circular region of ABPABP)

 

Substituting what we know, we find that the area of the shaded region is 72π144

BuilderBoi Jun 23, 2022

1 Online Users

avatar