+0  
 
0
85
7
avatar+2592 

 

 

In the diagram, if  \(\triangle ABC\) and \(\triangle PQR\) are equilateral, then what is the measure of 

\(\angle CXY\) in degrees?

 

 

https://latex.artofproblemsolving.com/c/5/a/c5a3159832bd8c1395bc179beaf94b1c58a2e9eb.png

tertre  Feb 20, 2018
Sort: 

7+0 Answers

 #1
avatar+12266 
+2

See diagram below

ElectricPavlov  Feb 20, 2018
 #3
avatar+2592 
+2

Great diagram! Thanks so much, EP!

tertre  Feb 20, 2018
 #2
avatar+86528 
+2

 

 

Angle YBP  = 180  - 65 - 60  = 55°

 

Angle BYP  =  180  - 75 - 60 = 45°

 

So

 

Angle BYP  =  180  - 55 - 45  = 80°

 

And Angle CYX is a vertical  angle to BYP  ....so it = 80°

 

So.... CXY  =  180  - 60  - 80   =   40°

 

 

cool cool cool

CPhill  Feb 20, 2018
 #4
avatar+2592 
+2

Amazing Explanation, CPhill! Great job!

tertre  Feb 20, 2018
 #5
avatar+86528 
+1

Thanks, tertre.....!!!

 

 

 

cool cool cool

CPhill  Feb 20, 2018
 #6
avatar+12266 
+1

Glad it helped , Tertre......waiting to see what the answer is to your red/white ball question to see if I got it correct!

ElectricPavlov  Feb 20, 2018
 #7
avatar+116 
+3

Let's see if I can solve this:

Since \(\triangle ABC\) and \(\triangle PQR\) are equilateral, then \(\angle ABC=\angle ACB=\angle RPQ=60^\circ\).

Therefore, \(\angle YBP = 180^\circ-65^\circ-60^\circ=55^\circ\)  and \(\angle YPB = 180^\circ-75^\circ-60^\circ=45^\circ\) .

In \(\triangle BYP\), we have \(\angle BYP = 180^\circ - \angle YBP - \angle YPB = 180^\circ - 55^\circ-45^\circ=80^\circ\).

Since \(\angle XYC = \angle BYP\) , then \(\angle XYC=80^\circ\).

In \(\triangle CXY\), we have \(\angle CXY = 180^\circ - 60^\circ - 80^\circ = 40^\circ\).

So our final answer is \(\boxed{40}\) degrees.

azsun  Feb 20, 2018

21 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy