+0  
 
0
429
7
avatar+4569 

 

 

In the diagram, if  \(\triangle ABC\) and \(\triangle PQR\) are equilateral, then what is the measure of 

\(\angle CXY\) in degrees?

 

 

https://latex.artofproblemsolving.com/c/5/a/c5a3159832bd8c1395bc179beaf94b1c58a2e9eb.png

 Feb 20, 2018
 #1
avatar+23646 
0

See diagram below

 Feb 20, 2018
 #3
avatar+4569 
+2

Great diagram! Thanks so much, EP!

tertre  Feb 20, 2018
 #2
avatar+111327 
+2

 

 

Angle YBP  = 180  - 65 - 60  = 55°

 

Angle BYP  =  180  - 75 - 60 = 45°

 

So

 

Angle BYP  =  180  - 55 - 45  = 80°

 

And Angle CYX is a vertical  angle to BYP  ....so it = 80°

 

So.... CXY  =  180  - 60  - 80   =   40°

 

 

cool cool cool

 Feb 20, 2018
 #4
avatar+4569 
+2

Amazing Explanation, CPhill! Great job!

tertre  Feb 20, 2018
 #5
avatar+111327 
+1

Thanks, tertre.....!!!

 

 

 

cool cool cool

CPhill  Feb 20, 2018
 #6
avatar+23646 
0

Glad it helped , Tertre......waiting to see what the answer is to your red/white ball question to see if I got it correct!

 Feb 20, 2018
 #7
avatar+191 
+3

Let's see if I can solve this:

Since \(\triangle ABC\) and \(\triangle PQR\) are equilateral, then \(\angle ABC=\angle ACB=\angle RPQ=60^\circ\).

Therefore, \(\angle YBP = 180^\circ-65^\circ-60^\circ=55^\circ\)  and \(\angle YPB = 180^\circ-75^\circ-60^\circ=45^\circ\) .

In \(\triangle BYP\), we have \(\angle BYP = 180^\circ - \angle YBP - \angle YPB = 180^\circ - 55^\circ-45^\circ=80^\circ\).

Since \(\angle XYC = \angle BYP\) , then \(\angle XYC=80^\circ\).

In \(\triangle CXY\), we have \(\angle CXY = 180^\circ - 60^\circ - 80^\circ = 40^\circ\).

So our final answer is \(\boxed{40}\) degrees.

 Feb 20, 2018

18 Online Users

avatar
avatar
avatar