+0  
 
0
162
7
avatar+3023 

 

 

In the diagram, if  \(\triangle ABC\) and \(\triangle PQR\) are equilateral, then what is the measure of 

\(\angle CXY\) in degrees?

 

 

https://latex.artofproblemsolving.com/c/5/a/c5a3159832bd8c1395bc179beaf94b1c58a2e9eb.png

tertre  Feb 20, 2018
 #1
avatar+12725 
+2

See diagram below

ElectricPavlov  Feb 20, 2018
 #3
avatar+3023 
+2

Great diagram! Thanks so much, EP!

tertre  Feb 20, 2018
 #2
avatar+88871 
+2

 

 

Angle YBP  = 180  - 65 - 60  = 55°

 

Angle BYP  =  180  - 75 - 60 = 45°

 

So

 

Angle BYP  =  180  - 55 - 45  = 80°

 

And Angle CYX is a vertical  angle to BYP  ....so it = 80°

 

So.... CXY  =  180  - 60  - 80   =   40°

 

 

cool cool cool

CPhill  Feb 20, 2018
 #4
avatar+3023 
+2

Amazing Explanation, CPhill! Great job!

tertre  Feb 20, 2018
 #5
avatar+88871 
+1

Thanks, tertre.....!!!

 

 

 

cool cool cool

CPhill  Feb 20, 2018
 #6
avatar+12725 
+1

Glad it helped , Tertre......waiting to see what the answer is to your red/white ball question to see if I got it correct!

ElectricPavlov  Feb 20, 2018
 #7
avatar+139 
+3

Let's see if I can solve this:

Since \(\triangle ABC\) and \(\triangle PQR\) are equilateral, then \(\angle ABC=\angle ACB=\angle RPQ=60^\circ\).

Therefore, \(\angle YBP = 180^\circ-65^\circ-60^\circ=55^\circ\)  and \(\angle YPB = 180^\circ-75^\circ-60^\circ=45^\circ\) .

In \(\triangle BYP\), we have \(\angle BYP = 180^\circ - \angle YBP - \angle YPB = 180^\circ - 55^\circ-45^\circ=80^\circ\).

Since \(\angle XYC = \angle BYP\) , then \(\angle XYC=80^\circ\).

In \(\triangle CXY\), we have \(\angle CXY = 180^\circ - 60^\circ - 80^\circ = 40^\circ\).

So our final answer is \(\boxed{40}\) degrees.

azsun  Feb 20, 2018

27 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.