In triangle $ABC,$ $AB = 15,$ $BC = 10,$ and $AC = 12.$ Find the length of the shortest altitude in this triangle.
Find the length of the shortest altitude in this triangle.
\(a_a:a_b:a_c=\frac{1}{a}:\frac{1}{b}:\frac{1}{c}\\ a_a:a_b:a_c=\frac{1}{10}:\frac{1}{12}:\frac{1}{15}\\\)
\({\color{blue}The\ shortest\ altitude}\ in\ this\ triangle\ \color{blue}is\ a_c.\\ \overline{AC}=12\ ,\ \overline{BC}=10\ ,\ \overline{AB}=15\)
C
|
\(a_c\) Triangle ABC
|
A x . 15-x B
\( a_c\ ^2=12^2-x^2=10^2-(15-x)^2\\ 144-x^2=100-(225-30x+x^2)\\ 144-100+225=30x\\ x=8.9\overline 6\)
\(a_c\ ^2=12^2-8.9\overline 6\ ^2\\ a_c=\sqrt{12^2-8.9\overline 6\ ^2}\\ \color{blue}a_c=7.97489\)
!