Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
42
2
avatar+279 

In triangle ABC, AB=15, BC=10, and AC=12. Find the length of the shortest altitude in this triangle.

 Apr 8, 2024
 #1
avatar+15073 
+1

Find the length of the shortest altitude in this triangle.

 

aa:ab:ac=1a:1b:1caa:ab:ac=110:112:115

The shortest altitude in this triangle is ac.¯AC=12 , ¯BC=10 , ¯AB=15

 

            C

             |

             ac                      Triangle ABC

             |

A     x    .     15-x    B

 

ac 2=122x2=102(15x)2144x2=100(22530x+x2)144100+225=30xx=8.9¯6

ac 2=1228.9¯6 2ac=1228.9¯6 2ac=7.97489

 

laugh !

 Apr 8, 2024
edited by asinus  Apr 10, 2024
 #2
avatar+130466 
+1

Semi-perimeter =  [ 15 + 10 + 12 ]  / 2 =  18.5

 

Area  = sqrt  [18.5 * 3.5 * 6.5 * 8.5 ]  ≈  59.8

 

Area =  (1/2) (longest side )( altitude to this side)

 

 59.8  = (1/2) (15)  (altitude to this side)

 

59.8 / 7.5  ≈  7.97  =  shortest altitude

 

cool cool cool

 Apr 9, 2024

1 Online Users