+0

# geometry

+1
65
2

Which is larger: the yellow area or the blue area? Dec 25, 2019

#1
+1

Call the radius  of the small circles, R

Call the radius of the large circle, 2R

(1/2)  of one of the  yellow areas = [ (1/4)pi R^2  -  (1/2)R^2  ]

So   the total of the yellow area  = 8 [ (1/4)pi R^2   - (1/2) R^2]  = R^2 [ 2pi - 4]

And  one of the pink areas  =   pi R^2  - [ pi R^2  - 2 R^2]   =  2R^2

So....the total of the pink areas =  8R^2

And the  area  of the large circle is  pi (2R)^2 =  4 pi R^2

So....the  blue area  =

Area of large circle -  pink areas  - yellow area

4 pi R^2 - 8R^2  - R^2 [ 2pi - 4]  =

4pi R^2  - 8R^2  - 2pi R^2  + 4R^2  =

2 pi R^2  - 4R^2

R^2  [ 2pi  - 4 ]

So....the areas are equal   !!!   Dec 26, 2019
#2
+1

Large circle radius   r = 2          Area of a large circle:     A = 22 * pai = 12.566 u2

Small circle radius   r = 1          Area of 4 small circles:   A = pai * 4   =  12.566 u2

This proves that the blue and yellow areas are equal. Dec 28, 2019